SRF and MKL1 Independently Inhibit Brown Adipogenesis

نویسندگان

  • Matthias Rosenwald
  • Vissarion Efthymiou
  • Lennart Opitz
  • Christian Wolfrum
چکیده

Active brown adipose tissue is responsible for non-shivering thermogenesis in mammals which affects energy homeostasis. The molecular mechanisms underlying this activation as well as the formation and activation of brite adipocytes have gained increasing interest in recent years as they might be utilized to regulate systemic metabolism. We show here that the transcriptional regulators SRF and MKL1 both act as repressors of brown adipogenesis. Loss-of-function of these transcription factors leads to a significant induction of brown adipocyte differentiation, increased levels of UCP1 and other thermogenic genes as well as increased respiratory function, while SRF induction exerts the opposite effects. Interestingly, we observed that knockdown of MKL1 does not lead to a reduced expression of typical SRF target genes and that the SRF/MKL1 inhibitor CCG-1423 had no significant effects on brown adipocyte differentiation. Contrary, knockdown of MKL1 induces a significant increase in the transcriptional activity of PPARγ target genes and MKL1 interacts with PPARγ, suggesting that SRF and MKL1 independently inhibit brown adipogenesis and that MKL1 exerts its effect mainly by modulating PPARγ activity.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Role of megakaryoblastic acute leukemia-1 in ERK1/2-dependent stimulation of serum response factor-driven transcription by BDNF or increased synaptic activity.

Serum response factor (SRF)-mediated transcription contributes to developmental and adult brain plasticity. Therefore, we investigated the role of a newly identified SRF coactivator, MKL1, in the regulation of SRF-driven transcription in rat forebrain neurons. MKL1 expression was found in newborn rat cortical or hippocampal neurons in culture as well as in adult rat forebrain. Immunostaining de...

متن کامل

Substrate stiffness-dependent regulation of the SRF-Mkl1 co-activator complex requires the inner nuclear membrane protein Emerin.

The complex comprising serum response factor (SRF) and megakaryoblastic leukemia 1 protein (Mkl1) promotes myofibroblast differentiation during wound healing. SRF-Mkl1 is sensitive to the mechanical properties of the extracellular environment; but how cells sense and transduce mechanical cues to modulate SRF-Mkl1-dependent gene expression is not well understood. Here, we demonstrate that the nu...

متن کامل

Identification, expression and characterization of rat isoforms of the serum response factor (SRF) coactivator MKL1☆

Megakaryoblastic leukemia 1 (MKL1) is a member of the MKL family of serum response factor (SRF) coactivators. Here we have identified three rat MKL1 transcripts: two are homologues of mouse MKL1 transcripts, full-length MKL1 (FLMKL1) and basic, SAP, and coiled-coil domains (BSAC), the third is a novel transcript, MKL1-elongated derivative of yield (MELODY). These rat MKL1 transcripts are differ...

متن کامل

Role for MKL1 in megakaryocytic maturation.

Megakaryoblastic leukemia 1 (MKL1), identified as part of the t(1;22) translocation specific to acute megakaryoblastic leukemia, is highly expressed in differentiated muscle cells and promotes muscle differentiation by activating serum response factor (SRF). Here we show that Mkl1 expression is up-regulated during murine megakaryocytic differentiation and that enforced overexpression of MKL1 en...

متن کامل

Megakaryoblastic leukemia 1, a potent transcriptional coactivator for serum response factor (SRF), is required for serum induction of SRF target genes.

Megakaryoblastic leukemia 1 (MKL1) is a myocardin-related transcription factor that we found strongly activated serum response element (SRE)-dependent reporter genes through its direct binding to serum response factor (SRF). The c-fos SRE is regulated by mitogen-activated protein kinase phosphorylation of ternary complex factor (TCF) but is also regulated by a RhoA-dependent pathway. The mechan...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره 12  شماره 

صفحات  -

تاریخ انتشار 2017